375 | |||
f : A ® B Bila b Î B, maka invers dari elemen b (dinyatakan dengan f-1 (b)) adalah elemen A yang mempunyai pasangan b, atau f-1 (b) = {x ½ x Î A, f(x) = b} Jika f adalah fungsi dari A ® B, maka f mempunyai fungsi invers f-1 :A ® B jika dan hanya jika f adalah one one onto / bijektif / korespondensi 1-1
TEOREMA f : A ® B dan f-1 : B ® A f-1 o f : A ® A : fungsi indentitas di A f f-1 A ® B ® A (f-1 o f) f o f-1 : B ® B : fungsi identitas di B f-1 f B ® A ® B (f o f-1) Sin, Cos and Tan![]() A right-angled triangle is a triangle in which one of the angles is a right-angle. The hypotenuse of a right angled triangle is the longest side, which is the one opposite the right angle. The adjacent side is the side which is between the angle in question and the right angle. The opposite side is opposite the angle in question. In any right angled triangle, for any angle: The sine of the angle = the length of the opposite side the length of the hypotenuse The cosine of the angle = the length of the adjacent side the length of the hypotenuse The tangent of the angle = the length of the opposite side the length of the adjacent side So in shorthand notation: sin = o/h cos = a/h tan = o/a Often remembered by: soh cah toa ExampleFind the length of side x in the diagram below:![]() The angle is 60 degrees. We are given the hypotenuse and need to find the adjacent side. This formula which connects these three is: cos(angle) = adjacent / hypotenuse therefore, cos60 = x / 13 therefore, x = 13 × cos60 = 6.5 therefore the length of side x is 6.5cm. The following graphs show the value of sinø, cosø and tanø against ø (ø represents an angle). From the sin graph we can see that sinø = 0 when ø = 0 degrees, 180 degrees and 360 degrees. |
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEju0MaLj-rWU1O4v-rY6mQrk8KsK6M89ePfHp81lzRcS0eE2W_tbDaXPBj3SmChcUvaxAHPQGGHpGVYUr2qDST8zMwzuLpNED2xGmEVB4IJBeFP8KT47T575r26qP0nwWmjGXFe9xONpog/s748/3.gif)
WELCOME ALL !!!
Semangat !!!!!!!!!!!!!!
Gambatte kudasai !!!!!!!!!!!!
Gambatte kudasai !!!!!!!!!!!!
MATEMATIKA KELAS XI (2)
Langganan:
Postingan (Atom)